
1 -

Audio Engineering Society
Convention Paper

Presented at the 119th Convention
2005 October 7–10 New York, New York USA

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

 VISUALAUDIO - AN ENVIRONMENT FOR DESIGNING,
TUNING, AND TESTING EMBEDDED AUDIO

APPLICATIONS

David A. Jaffe1, Paul Beckmann2, Britton Peddie3, Timothy Stilson4, and Scott Van Duyne5

Audio Rendering Technology Center (ARTC), Analog Devices, Inc., 1741 Technology Drive, Suite 400,
San Jose, CA. 95110

1David.Jaffe@analog.com, 2Paul.Beckmann@analog.com, 3Britton.Peddie@analog.com,
4Tim.Stilson@analog.com, 5Scott.VanDuyne@analog.com

ABSTRACT

Different hardware configurations and applications suggest different audio system design trade-offs. VisualAudio is
focused on embedded processor applications, and currently works with Analog Devices, Inc. SHARC and Blackfin
processors. VisualAudio is appropriate for a wide range of applications, including general purpose audio, pro audio,
music “stomp” boxes, consumer electronics (such as audio-visual receiver (AVR) systems), and automotive audio
systems. This article describes the decisions that were made in the design of VisualAudio and how they are tailored
to the embedded processing environment. It contrasts VisualAudio with previous systems created by the authors,
particularly Staccato Systems’ “SynthCore,” currently known as Analog Devices’ “SoundMAX.”

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 2 of 13

1. OVERVIEW OF VISUALAUDIO

VisualAudio1 is a development environment that
includes a framework, audio modules, and audio
decoders, all of which run on an embedded processor, as
well as PC tools for creating audio applications.

1.1. SHARC and Blackfin

VisualAudio was originally written for the SHARC and
its coverage has recently been expanded to include the
Blackfin processor. These two processors are quite
different. The SHARC is a 32-bit SIMD (single
instruction multiple data) floating point DSP with a
relatively large internal memory (for a DSP). The
Blackfin is a high-clock-rate 2x16-bit SIMD fixed-point
DSP with 32-bit embedded microcontroller capabilities
(such as instruction and data caches, high-performance
external SDRAM interface, and significant general-
purpose extensions to the instruction set). The Blackfin
also has extensive power management features and is
thus appropriate for portable battery-powered devices.
Both processors come in a variety of models, many with
integrated audio peripherals such as asynchronous
sampling rate converters, S/PDIF transceivers, etc.

Despite their differences, both processors are supported
by a similar framework. In addition, complementary
audio module sets allow processing networks to be
easily moved between processors. In the SHARC
implementation, the normal signal type is 32-bit
floating-point; on the Blackfin, it is 32-bit (double
precision) fixed-point.

1.2. Components of VisualAudio

The VisualAudio tool chain consists of the VisualAudio
tool, which is a plug-in to VisualDSP++ (Analog
Devices’ integrated development and debugging
environment), as well as a software framework which
may be configured for various uses, a set of audio
modules (commonly used audio processing functions), a
set of platform support packages, a set of decoders, an
external COM interface, a protocol for communicating
with a host micro-controller (if any), and a MATLAB
interface package. Three XML file formats are defined
to ease integration of diverse components: a module

1 “VisualAudio,” “SHARC,” “Blackfin,” “VisualDSP,” and
“SoundMAX” are registered as trademarks owned by Analog
Devices, Inc.

description file, a target platform description file and a
decoder description file.

The VisualAudio tool includes a GUI block diagram
editor for designing audio signal flow graphs (also
called “post-processing”), real-time adjustment of audio
module and decoder parameters, transparent switching
between hardware platforms, and other features. The
framework supports audio I/O, identification of the
S/PDIF content type, dynamic decoder instantiation,
asynchronous sampling rate conversion, post-
processing, a host protocol, a preset mechanism (for
compactly storing and applying sets of parameters,
doing A/B comparisons, storing multiple sample rate
coefficient sets, etc.), and user control code. In addition,
VisualAudio can generate post-processing systems
independent of the VisualAudio framework. These can
be integrated into customers’ frameworks and tuned (as
can VisualAudio frameworks) via the Background
Telemetry Channel (BTC), RS232, or other method.

2. WHY YET ANOTHER AUDIO SYSTEM? –
HISTORICAL CONTEXT

VisualAudio is the latest generation of a series of audio
software environments developed by the authors in
collaboration with others. Some historical context may
clarify the terrain that has been explored and that
informed the design of VisualAudio.

2.1. The PDP10/Samson Box

In the late 1970s, David Jaffe and Julius Smith worked
as gradudate students at Stanford University’s Center
for Computer Research in Music and Acoustics
(CCRMA) with an architecture consisting of a Digital
Equipment Corporation mainframe PDP10 and a
special-purpose audio processor, the Systems Concept
Digital Synthesizer (known as the “Samson Box”). The
Samson Box provided a fixed bank of basic audio
functions that could be configured in various ways via
registers, but were not fully programmable. The PDP10
was responsible for feeding commands to the Samson
Box, and the Samson Box rendered those commands
musically. The MUSBOX [1] (later, SAMBOX)
software took a dynamic approach similar to MUSIC-N
languages, with each “note” causing Samson Box
resources to be dynamically allocated, then deallocated.
Reflecting the raison d’etre of CCRMA, the focus was
entirely on music.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 3 of 13

2.2. The NeXT Music Kit, SynthBuilder and the
Frankenstein Box

Beginning in 1987, Jaffe and Smith were hired by Steve
Jobs of NeXT, Inc. to develop a music system for a new
computer. This computer was the first personal
computer to contain an embedded DSP for audio. The
resulting software was the NeXT Music Kit [2,3]. As in
the PDP10/SamsonBox environment, the main
processor (a Motorola 68030, then later a 68040, and
finally an Intel x86) was responsible for sending
commands to the DSP and the DSP was responsible for
rendering the audio. However, it differed from the
PDP10/SamsonBox in a number of respects. The DSP
was fully programmable and the goal was not just music
but also sound effects for games,
compression/decompression, etc. [4]. Most importantly,
because this was a personal computer, the number of
users was potentially much larger than those who had
access to specialized hardware at research institutions.
The software reflected this reality.

Like the PDP10/SamsonBox software, the Music Kit
was entirely dynamic. In fact, it was more dynamic in
that the primitive functions themselves could be
downloaded on the fly while audio was processed. The
system for allocating memory and processing cycles
(MIPS) was extremely general [5].

The object-oriented design of the Music Kit made it
easy to generalize to a multiple DSP architecture. This
was first accomplished with the Ariel QuintProcessor
[6], which contained five 56001s, then later with the
NextSTEP version of the MusicKit [7], which ran on the
Intel/PC architecture, using PC add-on cards. Each of
the PC cards contained a 56001 and used the DSP’s
serial port for I/O. The most elaborate implementation
of this was the prototype “Frankenstein box” which
used a bank of Motorola 56002 evaluation boards [8].

In view of the growing importance of MIDI at that time,
a design was developed that merged MIDI with the
Music-N generality, without sacrificing any of the
power of either of these. The Music Kit was the first to
tackle this problem in its full theoretical implications,
using a system of 32-bit “note tags,” to which MIDI
channels and key numbers were mapped. (In retrospect,
the solution was perhaps too academically correct, and a
simpler more practical solution might have sufficed.)

A need was seen for a graphical environment for
configuring the Music Kit and interacting with it in

performance. SynthBuilder [10] was developed by Nick
Porcaro2, some of the authors (Jaffe/Van
Duyne/Stilson), and others at CCRMA, as part of the
“Sondius” project, supported by the Stanford Office of
Technology Licensing (OTL) as part of its program to
maximize the value of its audio physical modeling
patents. SynthBuilder provided the user a graphical
user interface (GUI) to draw a block diagram of both the
signal processing (running on the DSP) and the event
processing (running on the PC.)

SynthBuilder took a somewhat static approach to using
the MusicKit. The user drew a block diagram that was
then downloaded to the DSP. At that point, it could be
played via real-time commands sent to the DSP. For
example, MIDI was received by the PC via a sound
card and sent to the PC’s main CPU, where software
objects would process the MIDI via a graphical network
of Music Kit “note filters,” then convert the event to a
series of DSP commands. SynthBuilder and the Music
Kit were especially useful in creating physical modeling
instruments, reflecting an interest of its authors that
dates back to the early 1980’s. Note that the MusicKit is
still supported and available for MacOS, Linux and
Windows [11].

2.3. SynthCore and SynthScript

In 1996, the Stanford OTL spun off the Sondius group
to form Staccato Systems, Inc., with the charter of
commercializing physical models for musical purposes.
The technology chosen was SynthBuilder, but this time
divorced from DSPs. Instead, a new audio engine called
“SynthCore” was developed. SynthCore was designed
as a server that would receive commands from a client
such as SynthBuilder via a simple language called
“SynthScript” [12]. SynthBuilder was modified to
communicate with SynthCore via SynthScript or,
alternatively, to save algorithms as SynthScript to be
rendered by SynthCore in a stand-alone manner (e.g. in
response to MIDI commands.)

SynthCore ran entirely on a PC, with both note filters
and signal processing in a single thread of execution. It
dynamically instantiated SynthScript algorithms, in

2 SynthBuilder evolved from a prototype graphical application
at NeXT, Inc. [9] and a student project by Eric Jordan at
Princeton University.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 4 of 13

response to incoming MIDI or API3 calls. Custom
audio functions could be dynamically loaded as plug-ins
without needing to restart SynthCore. Client
applications communicated with it via a COM
interface.

In addition to basic audio processing functions,
SynthCore included a highly-optimized wavetable
engine that supported Yamaha XG format, as well as
DLS24. The wavetable engine could be used together
with the basic audio processing functions to design
more complicated systems. For example, a MIDI file
could thus be rendered with a combination of physical
modeling algorithms and wavetable voices. SynthCore
was eventually shipped in millions of PCs as Analog
Devices’ SoundMAX [13].

Meanwhile, a significant market emerged for sound
effects for computer games, where the responsiveness
and realism of physical models is attractive. This lead to
the development of the SynthCore SDK (later, Analog
Devices’ SoundMAX SDK), based on the
SynthCore/SoundMAX engine, and shipped in a
number of leading computer games. These effects were
also used in a contemporary musical context in David
Jaffe’s “Racing Against Time,” scored for two violins,
two saxophones, piano and Mathews Radio Drum [14]
which used a six-dimensional input device [15] to
control SynthCore’s rendering of physical models of
automobiles, jet planes and electric guitars, as well as
samples of the acoustic instruments.

2.4. From SynthCore to VisualAudio

In 2001, soon after Analog Devices acquired Staccato
Systems, the authors demonstrated a prototype system
running SynthCore on a SHARC ADSP-21161 SIMD
(single instruction, multiple data) processor. The PC
communicated with the SHARC via RS-232, sending
SynthScript commands. The SHARC itself contained a
SynthScript interpreter, and ran the note filters and
signal processing network.

However, this design was not suitable for commercial
products based on embedded processors, such as the
SHARC or Blackfin, for a number of reasons.
Embedded applications have different requirements than

3 API = “Application programmer interface,” i.e. a set of
function calls that provide a programming interface to
SynthCore.
4 DLS2 = “Down-loadable sounds,” a format for
wavetable synthesizer data

PC-based applications. First and foremost, MIPS and
memory usage translate directly to cost which is
carefully controlled down to the penny. Thus, external
RAM is avoided when possible leaving only internal
memory. MIPS are also used to the limit of the chip
and must always be figured for worst case, rather than
average case.

In late 2002, Paul Beckmann proposed a new tool,
VisualAudio, which addresses these issues in a variety
of ways, including the following: VisualAudio moves
memory allocation and parameter initialization from the
DSP to the PC (or optional host processor) wherever
possible. It provides an automatic routing and allocation
algorithm that heavily reuses audio buffers. It supports
multiple interrupt levels for different block processing
sizes (larger sizes at lower interrupt levels). Finally, it
supports user control code written in C, instead of a
network of event processing modules.

In addition to general purpose audio support,
VisualAudio supports complex applications such as
AVR (audio-visual receivers) and automotive audio,
which contain elaborate I/O beyond what the general-
purpose audio model typically requires. For example, in
automotive audio, multiple sampling rates are
simultaneously received, including encrypted
compressed streams. This implies that content
decryption, identification of the content type, dynamic
instantiation of decoders, decoding and asynchronous
sampling rate conversion are required in one or more
places in the system.

For musical applications, VisualAudio is especially
well-suited to hardware designs that are intended to be
portable, low cost, and/or require low power
consumption or heat dissipation. Typical applications
include dedicated effects units (“stomp boxes”),
reverberators, synthesizers, performance controllers, etc.

VisualAudio addresses each phase of the typical product
development cycle, from design, through initial tuning,
porting to target hardware, final tuning, and automated
testing. Note that there is a fair degree of parallelism in
this process. One engineer may be developing the
processing algorithms on an evaluation board, while
another is developing the hardware, then the algorithms
are ported to the target hardware. VisualAudio takes this
work flow into account, with the goal of reducing
product development time, scheduling risk and project
cost for audio applications on embedded processors.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 5 of 13

3. THE VISUALAUDIO DSP ARCHITECTURE

The VisualAudio DSP application is a combination of
libraries, auto-generated source files, and manually-
created source files. The software can be factored into a
number of separate functions. The audio post-
processing “layout” contains the real-time audio
processing functions and all required parameters and
state variables. The data portion of the layout is
generated based upon a graphical block diagram
designed by the user while the layout code consists of
pre-written processing functions. The “layout support”
library is a thin layer that allows post-processing to run
and be tuned, and supports “presets,” which are
collections of module parameters. The “framework” is
a platform independent layer that encapsulates audio
functions such as buffering, stream detection,
instantiating and executing audio decoders. The
“platform” contains hardware specific functions such as
processor initialization and audio I/O. Finally, the “user
control code” contains the product’s internal control
logic.

The first step in using VisualAudio is to select a
“platform file”. This XML file describes the
capabilities of the target hardware to the VisualAudio
tool. It lists the libraries to link against, the sources to
copy into the new project, and characteristics of the
target hardware such as processor type and clock speed,
and the number and types of audio inputs and outputs.
After selecting a platform, the user enables decoders
and audio inputs and outputs, and this in turn is used to
derive the memory requirements of the system.

Once these preliminaries are completed, the principal
VisualAudio window appears as shown in Figure 1. To

its left is the “module palette”, a tree-structured browser
of audio modules. This is derived by searching a set of
user-settable file paths and finding all XML files that
specify the target processor as supported. To its right is
the “layout design window”. The user designs his post-
processing by dragging audio modules from the module
palette, dropping them onto the layout design window,
and connecting them together. Audio module
parameters can be set using “inspectors”. Once all
modules have been connected and configured, the user
pushes the “generate code” button. This runs the routing
algorithm and writes out a source file that represents the
post-processing network. The user can then edit the
control code to set module parameters and apply presets
in response to notifications from the framework or
decoders, or in response to host messages. For example,
if two presets in flash each represent filter coefficients
for a different sampling rate, then when a sampling rate
change notification is received, the user control code
would apply the appropriate preset. The user control
code can also be used to periodically poll the hardware,
ramp coefficients, etc.

Finally, the user presses the “build” button, at which
time the application is compiled/assembled and linked
and down-loaded to the target hardware. If any presets
are specified, these must be loaded to flash at this time.
Finally, the program is started and the BTC channel (or
other method) is used to communicate tuning
information. If the user likes the adjustments to the
parameters, he can save one or more sets as presets to be
loaded to flash the next time the program is built.
Tuning information is saved in a simple text format,
allowing for easy editing, comparing, etc.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 6 of 13

Figure 1. The principal VisualAudio window. The Audio Module Palette contains a list of available audio
processing modules. Modules are dragged, dropped, and wired together on the Layout Design Window. Each
module has an associated inspector that can be used to configure module parameters.

4. THE VISUALAUDIO FRAMEWORK

The VisualAudio framework is a light-weight interrupt
driven OS that handles audio I/O, communications with
a host micro-controller (if any), audio processing and
user control code. VisualAudio provides two variants of
this framework: a general purpose/AVR (“GP/AVR”)
framework and an automotive framework.

4.1. General Purpose/AVR Framework

The general purpose framework is shown in Figure 2
and assumes a single input stream that may be switched
between different modes, such as digital (e.g. S/PDIF)
and multi-channel analog. It runs the decoder, post-
processing and output at the same rate as the input. The
stream detection (if the digital input is active) selects
and instantiates the appropriate decoder. When enough

data has come in, a decoder is triggered at a lower
interrupt level. The decoder determines its own block
size. The only requirement is that the post-processing
buffer size evenly divide the decoder block size.
Meanwhile data continues to flow through the system
via a double-buffering scheme. The post-processing is
run immediately after the decoding. If the post-
processing buffer size is smaller than the decoder buffer
size, the post-processing is run several times in a row.
At user level (non-interrupt level), any host commands
are processed, and any control code is executed. Note
that since the decoding and post-processing are in the
same thread of execution, they can share scratch
memory, another memory optimization. Post-processing
is done in-place on the decoder output buffer.
Intermediate buffers in the post-processing are
automatically assigned using a routing algorithm
(described below), resulting in a high level of memory
reuse.

Audio
Module
Palette

Layout
Design
Window

Inspectors
set module
parameters

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 7 of 13

SPORT
Interface

Bitstream
Detector

Multi-
channel
codecs

S/PDIF
I/F

Audio Post-
Processing

Audio
Decoders

SPORT
Interface

Figure 2. Audio flow within the VisualAudio general purpose framework.

DTCP
Decryption

DTCP
Encryption

SPORT
Interface

Bitstream
Detector SRC

Unpack
MOST
data

SRC

Multi-
channel
codecs

SRC

SRC

Pack
MOST
data

MOST
I/F

Audio Post-
Processing

Audio
Decoders

Figure 3. Audio flow within the VisualAudio automotive framework.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 8 of 13

4.2. Automotive Framework with
Asynchronous Sample Rate Conversion

The automotive framework is designed especially for
high-end digital automotive amplifiers and is shown in
Figure 3. It differs from the GP/AVR framework in that
there are multiple simultaneous input streams which
may be running at different sampling rates. There may
be several PCM digital streams from sources such as a
MOST5 bus (the network of choice in automotive
applications), as well as several analog streams, and an
encoded content stream (via MOST or S/PDIF.) The
content stream may be encrypted with DTCP6 , a new
encrypting scheme for copyrighted entertainment
material sent over digital buses. The outputs may
include both analog channels and digital channels via
MOST. DTCP encryption may be required. To
accommodate this heterogeneous set of inputs and
outputs, the post-processing is run at a fixed sampling
rate and any inputs or outputs not synched to that rate
are converted using an asynchronous sampling rate
converter with an integrated jitter buffer. An
asynchronous sample rate converter has been developed
that is extremely efficient for multi-channel data (the
more channels, the more efficient the per-channel cost).
A servo algorithm makes subtle adjustments to the
sampling rate ratio to prevent underrun or overrun.
Since the block size of the decoding can vary, the post-
processing runs at a smaller block size and at a higher
interrupt level than the decoding. [REF]

4.3. Multiple Block Sizes without MIPS Spikes

If large block processing is required, such as large FFT-
based processing, this may be done (in either the
automotive or GP/AVR framework) at yet another

5 MOST stands for “Media Oriented Systems Transport”, a
multimedia fiber-optic (low overhead, low cost) point-to-point
network implemented in a ring, star or daisy-chain topology
over Plastic optical fibers. The MOST bus specifications
define the Physical Layer as well as the Application Layer,
Network Layer, and Medium Access Control.

6 DTCP stands for “Digital Transfer Content Protocol
Specification,” managed by Digital Transfer Licensing
Administrator (DTLA). It provides a cryptographic protocol
intended to protecting copyrighted material from unauthorized
copying, tampering, etc. Despite the fact that an automobile is
seemingly a closed system, DTCP is legally required, perhaps
forseeing a time where cars use wireless technology to
communicate with a home network on the Internet.

interrupt level and double-buffered to/from the post-
processing. The interrupt level depends on the block
size: the smaller the block size, the higher the interrupt
level. This ensures that all MIPS are used and there are
no bursts. Note that it is not adequate to compute the
FFTs in the post-processing thread, and buffer up the
output, as this would result in bursts of MIPS and
would require the whole system to leave room for these
bursts, thus wasting the processor much of the time.7

4.4. Bit Stream Detection Issues

The audio system may have a digital input, such as
S/PDIF or MOST, for receiving encoded digital content.
The content may arrive in a number of formats and it is
the job of the bit stream detector to identify the format
of the content. The implementation and fine-tuning of
the bit stream detector was tricky, for several reasons.
There is ambiguity in the IEC8 specifications for
S/PDIF streams. In addition, the detector must support
various non-IEC streams, such as DTS-CD9 , which
appears as an IEC PCM stream. Finally, many different
compressed stream types must be handled without
producing artifacts resulting from switching or
misidentification. The problem is exacerbated by
variations in DVD and CD players, and various out-of-
spec short-cuts in low-end players.

VisualAudio provides a robust heuristic algorithm that
does very well in preventing unwanted artifacts.
However, since there is no single ideal solution, it also
includes a set of parameters that give the customer the
ability to select his own trade-offs.

4.5. Memory Allocation

To avoid fragmentation and speed up memory
allocation, a standard general-purpose heap memory
allocation, such as the C library malloc(), is not

7 Currently the VisualAudio tool supports only two block
sizes: that of the decoder and that of the post-processing.
However, there is nothing in the architecture that prohibits this
generalization.

8 IEC stands for “International Electrotechnical Commission,”
a standards organization. The S/PDIF specification is
document IEC 61937.

9 Also called “unformatted DTS,” DTS-CD does not follow
the IEC specification. Thus, heuristics are required to
distinguish it from true PCM.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 9 of 13

required. Instead, memory is allocated statically by the
VisualAudio tool wherever possible. When dynamic
memory is required, it is allocated in a fixed sequence
from a stack. This ensures no fragmentation. Post-
processing state is allocated first, then post-processing
scratch, then decoder scratch (which can overlay with
post-processing scratch in the GP/AVR framework),
then decoder state, and finally user memory. User
memory is automatically freed when a decoder is
destroyed by the bit stream detector. Synchronization of
memory allocation and freeing is done via notification
messages to the user control code.

Since different decoders require different amounts of
memory, it is difficult to have a single post-processing
network that will support all decoders. In particular,
DTS 24/96, which produces data at 96 Khz., uses much
more memory than Dolby Digital (AC3) and DTS 48.
Thus, it is often desirable to have a smaller post-
processing layout for DTS 24/96, and a larger one for
Dolby Digital and DTS 48. This can be implemented
using VisualDSP++’s “overlay” mechanism. This
allows multiple data/code sets to share the same “run”
memory space, while each has its own “live” memory
space in flash or external memory. The code and data
for the new layout are DMA’ed as needed when the
stream is detected, into the same memory as the
previous layout. VisualDSP++ supports the ability for
the same piece of code or data to have two different
addresses, one where the code or data lives and the
other where it runs. This enables the linker to properly
fix up addresses and the loader to properly place the
code.

Finally, it is worth mentioning that the audio I/O DMA
size is typically smaller than the decoder block size.
This is because the DMA is double-buffered in both
directions. Thus, by using a smaller DMA size, less
overall memory is required. In addition, in the
automotive framework, a smaller DMA size allows for
lower latency for non-encoded data streams such as
announcements from collision avoidance systems.

4.6. Host Protocol and Notifications

VisualAudio supports a simple extensible host protocol
for communication between a host micro-controller and
the DSP. Each message begins with a 32-bit header
word containing an op-code and a word count. This is
followed by the data payload. The message ends with a
32-bit checksum word.

The protocol is always initiated by the host micro-
controller. The message is first sent to the framework. If
the framework does not recognize the op-code, the
message is forwarded to the user control code with the
high bit set. The receiver of the message constructs a
reply, which is then forwarded to the host micro-
controller.

The method of transmitting the messages and replies is
up to the platform-specific implementation. Typically
SPI10 is used, but other methods, such as flag pins, are
possible as well. Note that host communication can
occur in parallel with tuning via the BTC.

In addition to host messages, the framework and
decoders generate asynchronous notifications. These are
distinguished from host messages by the high bit being
zero. After the user control code handles the
notification, it can optionally forward it to the host
micro-processor. In this case, the notification gets put in
a queue of messages for the host micro-controller.
When the queue goes from empty to non-empty, a
platform-specific function is called to raise an interrupt
on the host micro-controller. If no such interrupt exists,
the host micro-controller should poll periodically for
notifications.

As an example, user control code might respond to
notifications by enabling Dolby Pro Logic II when the
input is stereo and disabling it when the input is 5.1.

5. AUDIO MODULES

VisualAudio provides a library of audio modules
sufficient to develop most products. Audio modules
operate on blocks of audio data rather than on individual
samples. This design choice is a good match for
products containing audio decoders which output blocks
of audio data. Also, by operating on blocks of data, the
overhead of a function call can be amortized over
several samples. This yields efficient execution while
supporting a modular software architecture.

VisualAudio provides a library of audio modules for a
variety of common functions ranging from primitives
such as scalers, multipliers and delays, to moderately
complex modules such as cascaded biquad filters, to
modules with 3rd party intellectual property, such as
Dolby Pro Logic IIx and DTS Neo:6. Source code is

10 SPI stands for “Serial Peripheral Interface” a standard serial
bus.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 10 of 13

provided to many of the modules and these can serve as
templates for custom modules.

Each audio module consists of three elements: (1) an
XML file that describes the audio module to the PC
application, (2) a real-time audio processing function,
and (3) a header file that describes the module’s data
structure and render function to the C compiler.

The XML file contains memory allocation rules, a list of
audio inputs and outputs, and lists high-level and low-
level parameters. High-level parameters are to be set by
the user directly. The XML file also contains a C-like
expression language for converting the high-level
parameters to low-level parameters that reside only on
the DSP. For example, an oscillator’s frequency may be
specified in Hertz using a high-level parameter, but
would be mapped to a low-level parameter with units of
radians/sample by the expression language. This
mechanism is adequate for (e.g.) simple filter design
techniques, but more involved design algorithms are
best handled in an external application, such as
MATLAB, communicating via the COM interface.

The audio module’s real-time processing function –
called the render function – follows a C calling
convention for ease of development and integration.
Most of the audio modules supplied with VisualAudio
are written in hand-coded assembly language, though
they can be written in C if desired. Each module’s
render function is called with three arguments: a pointer
to the module’s data structure, an array of pointers to
input, output and scratch buffers, and the block size. An
example C prototype for a render function appears as
follows:

 void Biquad_Render(AMF_Biquad *instance,
float **buffers,
int tickSize);

Each module stores a pointer to its render function;
hence the render function itself can swap-in an
alternative function to be run the next time the module
executes. Any module can be muted, bypassed or
inactivated simply by modifying its render function
pointer.

Audio data is presented by 32-bit data types on both the
SHARC and Blackfin. The SHARC utilizes single
precision floating-point while the Blackfin utilizes a
fractional representation. VisualAudio supports both
mono and stereo audio connections. Stereo streams are
represented by interleaved data and facilitate use of

SIMD. Audio modules have any number of input and
output “pins,” any of which may be mono or stereo. The
module’s I/O is specified in the module XML file.

Each module class is represented by a single C structure
typedef, where the fields of this structure represent the
low-level parameters of the module. The module
format also supports indirect arrays whose size is
determined by an expression. For example, a delay
buffer size could be specified in seconds or the size of a
filter coefficient array could depend on the filter order.

VisualAudio provides inspectors for configuring audio
module parameters as shown in Figure 1. The inspector
contains sliders, fields, or other controls for the high-
level variables specified in the module XML file. It
also supports read-back variables that display the state
on the DSP. VisualAudio is able to create this inspector
based solely on the information in the XML file.
Alternatively, the XML file can specify a DLL to load
to provide a custom inspector and communicate with
VisualAudio via a standard API.

The audio module library was designed to provide
significant overlap between the SHARC and Blackfin
processors. When possible, the same high-level API is
provided on both processors. Thus, it is possible to
open a SHARC processing layout, change to a Blackfin
platform, and run the layout on the Blackfin.

The library modules are highly-optimized assembly
language and examples of inner loops are shown in
Figure 4. The examples are from modules that
implement a cascade of biquad filters that operate on
interleaved stereo data.

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 11 of 13

 lcntr=r1, do filtering until lce;
 f12=f2*f4, f8=f8+f12, f10=dm(i3,m4);
 f12=f3*f5, f10=f10+f12, dm(i4,m4)=f8;
 f12=f2*f6, f8=f10+f12, f2=f3;
 filtering:
 f12=f3*f7, f8=f8+f12, f3=f8;

 LSETUP (sampleLoopStart , sampleLoopEnd)
 LC0=P3;
 sampleLoopStart:
 A0 += R0.H*R4.H, A1 += R0.H*R4.L (M) || R1=[I1] || NOP;
 A1 += R4.H*R0.L (M);
 A0 += R1.H*R6.H, A1 += R1.H*R6.L (M) || [I1]=R5 || NOP;
 A1 += R6.H*R1.L (M) || R1=[I0++M2] || NOP;
 A0 += R1.H*R7.H, A1 += R1.H*R7.L (M) || R0=[I0] || NOP;
 A1 += R7.H*R1.L (M);
 A0 += R0.H*R3.H, A1 += R0.H*R3.L (M) || R5=[I2++M2] || NOP;
 A1 += R3.H*R0.L (M);
 A1 = A1 >>> 15;
 A0 += A1;
 R0 = A0 (ISS2);
 A0 = R5.H*R2.H, A1 = R5.H*R2.L (M) || [I0]=R0 || NOP;
sampleLoopEnd:
 A1 += R2.H*R5.L (M) || R0=[I1++M2] || [I3++M2]=R0;

Figure 4. Optimized inner loops for stereo biquad filters on the SHARC (top) and Blackfin (bottom). Each loop
operates on stereo interleaved data and iterates over a block of audio samples. An outer loop (not shown) iterates
over multiple stages of biquads. On the SHARC, SIMD execution is enabled, and the arithmetic occurs twice –
once each in the primary and secondary register sets. Each biquad has 4 coefficients and implements a Direct Form
II structure. A total of 8 floating-point multiply-accumulates occur in 4 clock cycles. On the Blackfin, each biquad
has 5 coefficients and implements a Direct Form I structure. A total of 10 32-bit double precision multiply-
accumulates require 13 cycles.

6. AUTOMATIC ALGORITHM FOR
DETERMINING ROUTING, RUN-TIME
ORDER AND MEMORY ALLOCATION

VisualAudio supports arbitrary graphs for post-
processing. The only restriction is that only one
graphical connection (called a “wire”) may connect to
each input pin of a module. Output pins may fan out to
multiple modules. Feedback is allowed. This allows
reverberators and physical models to be easily created.
A module may even feedback to itself.

To allocate the modules and determine their run order,
an automated routing algorithm was devised. This
algorithm has several stages. First, it checks for
circularities. It does this by traversing the network

recursively, beginning with each audio input pin (that is,
the outputs of the decoder or the direct analog or PCM
input), and then beginning again with each module that
was not reached in the first search (because it has no
connected inputs or no inputs at all). Any detected
circularity results in a static buffer allocation, as this
buffer is needed to break the circularity and represents a
buffer-length delay.

The next step is to traverse the network again, this time
doing a topological sort [16] to determine run order.
This leads to a run order with no hidden delays, except
where a circularity was detected. As each module is
visited, input and output buffers are allocated from a
scratch pool. As soon as a buffer’s contents is no longer
needed, it is returned to the scratch pool. This typically
results in a large degree of buffer reuse. Note that some
modules are coded (and specified in the XML) such that
inputs and outputs may share the same memory buffers,

SHARC

Blackfin

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 12 of 13

while others require that their inputs and outputs be
distinct from one another. These restrictions are taken
into account by the routing and allocation algorithm. In
addition, modules can use arbitrary amounts of scratch
memory, which is allocated from the same pool as the
inter-connection buffers. Finally, all of this memory is
available as scratch to the decoders in the GP/AVR
framework, where decoding and post-processing occur
in the same thread. Thus, only a small amount of
memory is needed to run the post-processing network
above and beyond that required by the audio module
parameters and state variables themselves.

Inter-module connection buffer pointers are not stored
directly, but as indices into an array of pointers. This
allows double buffering of the post-processing buffer
itself and reuse of this pair of buffers as inter-module
connection buffers. Before a module is called by the
framework, its indices are resolved to pointers, and
these are passed to the module render code. In
applications where the double-buffering is not needed,
the indices are resolved at initialization time, thus
saving the MIPS needed to continually resolve them on
each render call. (This optimization is possible only if
the post-processing buffer size is the same as the I/O
DMA size.)

Note that since the post-processing is done in-place, it is
possible for the routing algorithm to reach a point where
it needs to write into an output buffer that is
unavailable, as its contents haven’t been fully consumed
yet. In this case, the routing algorithm allocates a
temporary buffer and inserts a copy module to copy the
data to the output buffer. This copy is inserted at the end
of the list of modules so that by the time it runs, the
output buffer is available.

7. TUNING

Tuning of audio modules can be done in real-time using
the VisualAudio tool’s inspectors or via the external
COM interface. The tuning is implemented with a
subset of the host protocol that allows individual
variables and arrays (including sparse arrays) to be set
or read. The tuning commands are executed on the DSP
at non-interrupt level, while audio executes at interrupt
level. This allows audio to proceed uninterrupted,
regardless of the bandwidth of the tuning
communication. However, there are times when a set of
coefficients must be applied as a unit, with no
intervening audio processing, to avoid an undesirable
effect, such as a filter going unstable. For this reason, an

“atomic” setting command is provided, which masks
interrupts while the array transfer occurs. Similarly, an
atomic read guarantees that all read values in a packet
come from the same instant in time.

8. AUTOMATED TESTING

The COM interface is useful for implementing
automated test scripts. In addition to its support for
reading and writing parameters, the COM interface also
provides a “demand render” mode. Here, the audio
processing is halted and input buffers are written to the
DSP from the external application (typically,
MATLAB). The audio processing is then triggered and
the resulting data is read back. This allows regression
testing to be completely automated.

9. CONCLUSION

VisualAudio has proven to be a viable tool for speeding
up deployment of audio products on Analog Devices
SHARC processors, and is beginning to be used for
Blackfin processors. It was designed from the beginning
with these applications in mind and this focus guided
the design trade-offs. In addition the VisualAudio tool,
framework, modules and decoders were developed in
parallel, and are thus well integrated with one another,
while also maintaining sufficient independence to allow
them to be easily used separately. For information about
obtaining VisualAudio, visit www.analog.com and
search for “VisualAudio.”

10. ACKNOWLEDGEMENTS

This work was supported by Analog Devices, Inc.
Thanks to everyone who helped with the VisualAudio
project, in no particular order: Thanks to key software
developers, Eric Liang, Steve Goeckler, Vathsa
Duglapura, Min Guo; to algorithm developers, Sean
Costello and Joe Anderson; to quality engineers, Alicia
Nachman, Chris Owens, Sachin Nanda, Liza Khodel,
Kishore Dasari, Madan Mohan, Kranti Kumar, Tarun
Kumar; to audio decoder development team,
Laxminarayana Parayitam, Padmavathi Ramanathan,
Subrahmanyam KVVD, Sailaja Mahendrakar; to the
program management and engineering support team,
Mauricio Greene, Fernando Martinez, and Atom Ellis;
to Melissa Fahey for excellent documentation, graphics
and developer support; to Matt Walsh and Dan Ledger
for automotive platform integration and design
engineering; to Brad Lee, Adam Shelly and Alan

Jaffe et al. VisualAudio - Designing, Tuning, Testing

AES 119th Convention, New York, New York, 2005 October 7–10
Page 13 of 13

Gerrard, who integrated the SoundMAX wavetable
synthesizer into VisualAudio; to Vincent Fung, Jason
Herskowitz, Lori Berensen, Tom Cote on the product
side, and Dennis Labrecque marketing guy par
excellence; to Dan Harn for legal support; and to
Debbie Davis, who kept us organized. Thanks to Colin
Duggan, who steadfastly promoted the business
justification for VisualAudio; to Catherine Stevens who
kept our team resourced and motivated, and to John
Croteau who championed the acquisition of Staccato
Systems and formed ARTC at Analog Devices.

11. REFERENCES

[1] Loy, G. D. 1981. “Notes on the implementation of
MUSBOX: A compiler for the Systems Concepts
digital synthesizer.” Computer Music Journal 5, 1,
34-50.

[2] Jaffe, D. and L. Boynton. “An Overview of the
Sound and Music Kits for the NeXT Computer'',
Computer Music Journal, 14(2):48-55. Reprinted in
The Well-Tempered Object, ed. Stephen Pope,
1991, MIT Press.

[3] J. O. Smith, D. Jaffe and L. Boynton. “Music
System Architecture on the NeXT Computer'',
Proceedings 1989 Audio Engineering Society
Conference, L.A., CA.

[4] Jaffe, D. “Musical and Extramusical Applications
of the NeXT Music Kit”, Proceedings 1991
International Computer Music Conference, pp.
521-524, Montreal, Canada.

[5] Jaffe, D. “Efficient Dynamic Resource
Management on Multiple DSPs, as Implemented in
the NeXT Music Kit”, Proceedings 1990
International Computer Music Conference, pp.
188-190, Eastman, NY.

[6] Jaffe, D. and J. O. Smith. “Real Time Sound
Processing and Synthesis on Multiple DSPs Using
the Music Kit and the Ariel QuintProcessor.”
Proceedings 1993 International Computer Music
Conference, Tokyo, Japan.

[7] Jaffe, D., J. O. Smith, N. Porcaro. “The Music Kit
on a PC”, Proceedings of the first Brazilian
Symposium on Computation and Music, XIV
Congress of the Brazilian Society of Computation,
1995, Caxambu, MG. pg. 63-69.

[8] Poracro, N., W. Putnam, P. Scandalis, D. Jaffe, J.
Smith, T. Stilson, and S. Van Duyne,
“SynthBuilder and Frankenstein, Tools for the
Creation of Musical Physical Models.”
International Conference on Auditory Display,
1996, Palo Alto, Santa Fe Institute and Xerox Parc.

[9] Minnick, M. “A Graphical Editor for Building Unit
Generator Patches”, Proceedings 1990
International Computer Music Conference.

[10] Porcaro, N., D. Jaffe, P. Scandalis, J. Smith, and T.
Stilson, “SynthBuilder – a Graphical Rapid-
Prototyping Tool for the Development of Musical
Synthesis and Effects Patches on Multiple
Platforms,” Computer Music Journal, MIT Press,
22(2):35-43

[11] Brandon, S. and L. Smith, “Next Steps from
NeXTSTEP: Music Kit and Sound Kit in a New
World,” Proceedings 2000 International Computer
Music Conference.

[12] Staccato Systems, Inc. demo presentation at
International Computer Music Conference,
Thesoliniki, Greece. Further info at:
http://www.http://www.elecdesign.com/Globals/Pla
netEE/Content/4386.html

[13] SoundMAX web site at the following URL:
http://www.soundmax.com

[14] Jaffe, D. “Racing Against Time,” for two violins,
two saxophones, piano and radio drum.
Commissioned by “Quarks!”. Published by Terra
Non Firma Press. Released on DVD with
Proceedings 2004 International Computer Music
Conference, Miami. For further info, visit:
http://www.jaffe.com

[15] Boie, R. A., L.W. Ruedisueli and E.R. Wagner
"Gesture Sensing via Capacitive Moments" Work
Project No. 311401-(2099,2399) AT&T Bell
Laboratories, 1989. Also, Mathews, M. V. and W.
A. Schloss "The Radio Drum as a Synthesizer
Controller." Proceedings 1989 International
Computer Music Conference, Columbus Ohio.

[16] Cormen, T., Charles.Leiserson, Ronald Rivest.
Introduction to Algorithms, MIT Press, Cambridge,
MA, 1990, pgs. 485-488. Editorial Acme,
Barcelona, 2005.

