
1 -  

Audio Engineering Society 
Convention Paper 

Presented at the 119th Convention 
2005 October 7–10 New York, New York USA 

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration 
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request 
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. 
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the 
Journal of the Audio Engineering Society. 

 VISUALAUDIO - AN ENVIRONMENT FOR DESIGNING, 
TUNING, AND TESTING EMBEDDED AUDIO 

APPLICATIONS 

 
David A. Jaffe1, Paul Beckmann2, Britton Peddie3, Timothy Stilson4,   and Scott Van Duyne5 

Audio Rendering Technology Center (ARTC), Analog Devices, Inc., 1741 Technology Drive, Suite 400, 
San Jose, CA. 95110 

1David.Jaffe@analog.com, 2Paul.Beckmann@analog.com, 3Britton.Peddie@analog.com, 
4Tim.Stilson@analog.com, 5Scott.VanDuyne@analog.com 

 

ABSTRACT 

Different hardware configurations and applications suggest different audio system design trade-offs. VisualAudio is 
focused on embedded processor applications, and currently works with Analog Devices, Inc. SHARC and Blackfin 
processors. VisualAudio is appropriate for a wide range of applications, including general purpose audio, pro audio, 
music “stomp” boxes, consumer electronics (such as audio-visual receiver (AVR) systems), and automotive audio 
systems. This article describes the decisions that were made in the design of VisualAudio and how they are tailored 
to the embedded processing environment. It contrasts VisualAudio with previous systems created by the authors, 
particularly Staccato Systems’ “SynthCore,” currently known as Analog Devices’ “SoundMAX.” 
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1.  OVERVIEW OF VISUALAUDIO 

VisualAudio1 is a development environment that 
includes a framework, audio modules, and audio 
decoders, all of which run on an embedded processor, as 
well as PC tools for creating audio applications.  

1.1. SHARC and Blackfin 

VisualAudio was originally written for the SHARC and 
its coverage has recently been expanded to include the 
Blackfin processor. These two processors are quite 
different. The SHARC is a 32-bit SIMD (single 
instruction multiple data) floating point DSP with a 
relatively large internal memory (for a DSP). The 
Blackfin is a high-clock-rate 2x16-bit SIMD fixed-point 
DSP with 32-bit embedded microcontroller capabilities 
(such as instruction and data caches, high-performance 
external SDRAM interface, and significant general-
purpose extensions to the instruction set). The Blackfin 
also has extensive power management features and is 
thus appropriate for portable battery-powered devices. 
Both processors come in a variety of models, many with 
integrated audio peripherals such as asynchronous 
sampling rate converters, S/PDIF transceivers, etc.  

Despite their differences, both processors are supported 
by a similar framework. In addition, complementary 
audio module sets allow processing networks to be 
easily moved between processors. In the SHARC 
implementation, the normal signal type is 32-bit 
floating-point; on the Blackfin, it is 32-bit (double 
precision) fixed-point.  

1.2. Components of VisualAudio 

The VisualAudio tool chain consists of the VisualAudio 
tool, which is a plug-in to VisualDSP++ (Analog 
Devices’ integrated development and debugging 
environment),  as well as a software framework which 
may be configured for various uses, a set of audio 
modules (commonly used audio processing functions), a 
set of platform support packages, a set of decoders, an 
external COM interface, a protocol for communicating 
with a host micro-controller (if any), and a MATLAB 
interface package. Three XML file formats are defined 
to ease integration of diverse components: a module 
                                                           
1 “VisualAudio,” “SHARC,” “Blackfin,” “VisualDSP,” and 
“SoundMAX” are registered as trademarks owned by Analog 
Devices, Inc. 

description file, a target platform description file and a 
decoder description file.  

The VisualAudio tool includes a GUI block diagram 
editor  for designing audio signal flow graphs (also 
called “post-processing”), real-time adjustment of audio 
module and decoder parameters, transparent switching 
between hardware platforms, and other features. The 
framework supports audio I/O, identification of the 
S/PDIF content type, dynamic decoder instantiation, 
asynchronous sampling rate conversion, post-
processing, a host protocol, a preset mechanism (for 
compactly storing and applying sets of parameters, 
doing A/B comparisons, storing multiple sample rate 
coefficient sets, etc.), and user control code. In addition, 
VisualAudio can generate post-processing systems 
independent of the VisualAudio framework. These can 
be integrated into customers’ frameworks and tuned (as 
can VisualAudio frameworks) via the Background 
Telemetry Channel (BTC), RS232, or other method. 

2. WHY YET ANOTHER AUDIO SYSTEM? – 
HISTORICAL CONTEXT 

VisualAudio is the latest generation of a series of audio 
software environments developed by the authors in 
collaboration with others. Some historical context may 
clarify the terrain that has been explored and that 
informed the design of VisualAudio. 

2.1. The PDP10/Samson Box 

In the late 1970s, David Jaffe and Julius Smith worked 
as gradudate students at Stanford University’s Center 
for Computer Research in Music and Acoustics 
(CCRMA) with an architecture consisting of a Digital 
Equipment Corporation mainframe PDP10 and a 
special-purpose audio processor, the Systems Concept 
Digital Synthesizer (known as the “Samson Box”). The 
Samson Box provided a fixed bank of basic audio 
functions that could be configured in various ways via 
registers, but were not fully programmable. The PDP10 
was responsible for feeding commands to the Samson 
Box, and the Samson Box rendered those commands 
musically. The MUSBOX [1] (later, SAMBOX) 
software took a dynamic approach similar to MUSIC-N 
languages, with each “note” causing Samson Box 
resources to be dynamically allocated, then deallocated. 
Reflecting the raison d’etre of CCRMA, the focus was 
entirely on music. 
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2.2. The NeXT Music Kit, SynthBuilder and the 
Frankenstein Box 

Beginning in 1987, Jaffe and Smith were hired by Steve 
Jobs of NeXT, Inc. to develop a music system for a new 
computer. This computer was the first personal 
computer to contain an embedded DSP for audio. The 
resulting software was the NeXT Music Kit [2,3]. As in 
the PDP10/SamsonBox environment, the main 
processor (a Motorola 68030, then later a 68040, and 
finally an Intel x86) was responsible for sending 
commands to the DSP and the DSP was responsible for 
rendering the audio. However, it differed from the 
PDP10/SamsonBox in a number of respects. The DSP 
was fully programmable and the goal was not just music 
but also sound effects for games, 
compression/decompression, etc. [4]. Most importantly, 
because this was a personal computer, the number of 
users was potentially much larger than those who had 
access to specialized hardware at research institutions. 
The software reflected this reality.  

Like the PDP10/SamsonBox software, the Music Kit 
was entirely dynamic. In fact, it was more dynamic in 
that the primitive functions themselves could be 
downloaded on the fly while audio was processed. The 
system for allocating memory and processing cycles 
(MIPS) was extremely general [5].  

The object-oriented design of the Music Kit made it 
easy to generalize to a multiple DSP architecture. This 
was first accomplished with the Ariel QuintProcessor 
[6], which contained five 56001s, then later with the 
NextSTEP version of the MusicKit [7], which ran on the 
Intel/PC architecture, using PC add-on cards. Each of 
the PC cards contained a 56001 and used the DSP’s 
serial port for I/O. The most elaborate  implementation 
of this was the prototype “Frankenstein box” which 
used a bank of Motorola 56002 evaluation boards [8]. 

In view of the growing importance of MIDI at that time, 
a design was developed that merged MIDI with the 
Music-N generality, without sacrificing any of the 
power of either of these. The Music Kit was the first to 
tackle this problem in its full theoretical implications, 
using a system of 32-bit “note tags,” to which MIDI  
channels and key numbers were mapped. (In retrospect, 
the solution was perhaps too academically correct, and a 
simpler more practical solution might have sufficed.) 

A need was seen for a graphical environment for 
configuring the Music Kit and interacting with it in 

performance. SynthBuilder [10] was developed by Nick 
Porcaro2, some of the authors (Jaffe/Van 
Duyne/Stilson), and others at CCRMA, as part of the 
“Sondius” project, supported by the Stanford Office of 
Technology Licensing (OTL) as part of its program to 
maximize the value of its audio physical modeling 
patents.  SynthBuilder provided the user a graphical 
user interface (GUI) to draw a block diagram of both the 
signal processing (running on the DSP) and the event 
processing (running on the PC.)  

SynthBuilder took a somewhat static approach to using 
the MusicKit. The user  drew a block diagram that was 
then downloaded to the DSP. At that point, it could be 
played via real-time commands sent to the DSP. For 
example, MIDI was  received by the PC via a sound 
card and sent to the PC’s main CPU, where software 
objects would process the MIDI via a graphical network 
of Music Kit “note filters,” then convert the event to a 
series of DSP commands. SynthBuilder and the Music 
Kit were especially useful in creating physical modeling 
instruments, reflecting an interest of its authors that 
dates back to the early 1980’s. Note that the MusicKit is 
still supported and available for MacOS, Linux and 
Windows [11]. 

2.3. SynthCore and SynthScript 

In 1996, the Stanford OTL spun off the Sondius group 
to form Staccato Systems, Inc., with the charter of 
commercializing physical models for musical purposes. 
The technology chosen was SynthBuilder, but this time 
divorced from DSPs. Instead, a new audio engine called 
“SynthCore” was developed. SynthCore was designed 
as a server that would receive commands from a client 
such as SynthBuilder via a simple language called 
“SynthScript” [12]. SynthBuilder was modified to 
communicate with SynthCore via SynthScript or, 
alternatively, to save algorithms as SynthScript to be 
rendered by SynthCore in a stand-alone manner (e.g. in 
response to MIDI commands.)   

SynthCore ran entirely on a PC, with both note filters 
and signal processing in a single thread of execution. It 
dynamically instantiated  SynthScript algorithms, in 

                                                           

2 SynthBuilder evolved from a prototype graphical application 
at NeXT, Inc. [9] and a student project by Eric Jordan at 
Princeton University.  
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response to incoming MIDI or API3  calls. Custom 
audio functions could be dynamically loaded as plug-ins 
without needing to restart SynthCore. Client 
applications communicated with it via a COM  
interface. 

In addition to basic audio processing functions, 
SynthCore included a highly-optimized wavetable 
engine that supported Yamaha XG format, as well as 
DLS24. The wavetable engine could be used together 
with the basic audio processing functions to design 
more complicated systems.  For example, a MIDI file 
could thus be rendered with a combination of physical 
modeling algorithms and wavetable voices. SynthCore 
was eventually shipped in millions of PCs as Analog 
Devices’ SoundMAX [13]. 

Meanwhile, a significant market emerged for sound 
effects for computer games, where the responsiveness 
and realism of physical models is attractive. This lead to 
the development of the SynthCore SDK (later, Analog 
Devices’ SoundMAX SDK), based on the 
SynthCore/SoundMAX engine, and shipped in a 
number of leading computer games. These effects were 
also used in a contemporary musical context  in David 
Jaffe’s  “Racing Against Time,” scored for two violins, 
two saxophones, piano and Mathews Radio Drum [14] 
which used a six-dimensional input device [15] to 
control SynthCore’s rendering of physical models of 
automobiles, jet planes and electric guitars, as well as 
samples of the acoustic instruments. 

2.4. From SynthCore to VisualAudio 

In 2001, soon after Analog Devices acquired Staccato 
Systems, the authors demonstrated a prototype system 
running SynthCore on a SHARC ADSP-21161 SIMD 
(single instruction, multiple data) processor. The PC 
communicated with the SHARC via RS-232, sending 
SynthScript commands. The SHARC itself contained a 
SynthScript interpreter, and ran the note filters and 
signal processing network.  

However, this design was not suitable for commercial 
products based on embedded processors, such as the 
SHARC or Blackfin, for a number of reasons. 
Embedded applications have different requirements than 
                                                           
3 API = “Application programmer interface,” i.e. a set of 
function calls that provide a programming interface to 
SynthCore. 
4 DLS2 = “Down-loadable sounds,” a format for 
wavetable synthesizer data 

PC-based applications. First and foremost, MIPS and 
memory usage translate directly to cost which is 
carefully controlled down to the penny.  Thus, external 
RAM is avoided when possible leaving only internal 
memory.  MIPS are also used to the limit of the chip 
and must always be figured for worst case, rather than 
average case.  

In late 2002, Paul Beckmann proposed a new tool, 
VisualAudio, which addresses these issues in a variety 
of ways, including the following: VisualAudio moves 
memory allocation and parameter initialization from the 
DSP to the PC (or optional host processor) wherever 
possible. It provides an automatic routing and allocation 
algorithm that heavily reuses audio buffers. It supports 
multiple interrupt levels for different block processing 
sizes (larger sizes at lower interrupt levels). Finally, it 
supports  user control code written in C, instead of a 
network of event processing modules. 

In addition to general purpose audio support, 
VisualAudio supports complex applications such as 
AVR (audio-visual receivers ) and automotive audio, 
which contain elaborate I/O beyond what the general-
purpose audio model typically requires. For example, in 
automotive audio, multiple sampling rates are 
simultaneously received, including encrypted 
compressed streams. This implies that content 
decryption, identification of the content type, dynamic 
instantiation of decoders, decoding and asynchronous 
sampling rate conversion are required in one or more 
places in the system.  

For musical applications, VisualAudio is especially 
well-suited to hardware designs that are intended to be 
portable, low cost, and/or require low power 
consumption or heat dissipation. Typical applications 
include dedicated effects units (“stomp boxes”), 
reverberators, synthesizers, performance controllers, etc. 

VisualAudio addresses each phase of the typical product 
development cycle, from design, through initial tuning, 
porting to target hardware, final tuning, and automated 
testing. Note that there is a fair degree of parallelism in 
this process. One engineer may be developing the 
processing algorithms on an evaluation board, while 
another is developing the hardware, then the algorithms 
are ported to the target hardware. VisualAudio takes this 
work flow into account, with the goal of reducing 
product development time, scheduling risk and project 
cost for audio applications on embedded processors. 
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3. THE VISUALAUDIO DSP ARCHITECTURE 

The VisualAudio DSP application is a combination of 
libraries, auto-generated source files, and manually-
created source files.  The software can be factored into a 
number of separate functions.  The audio post-
processing “layout” contains the real-time audio 
processing functions and all required parameters and 
state variables.  The data portion of the layout is 
generated based upon a graphical block diagram 
designed by the user while the layout code consists of 
pre-written processing functions.  The “layout support” 
library is a thin layer that allows post-processing to run 
and be tuned, and supports “presets,” which are 
collections of module parameters.  The “framework” is 
a platform independent layer that encapsulates audio 
functions such as buffering, stream detection, 
instantiating and executing audio decoders.  The 
“platform” contains hardware specific functions such as 
processor initialization and audio I/O.  Finally, the “user 
control code” contains the product’s internal control 
logic. 

The first step in using VisualAudio is to select a 
“platform file”.  This XML file describes the 
capabilities of the target hardware to the VisualAudio 
tool.  It lists the libraries to link against, the sources to 
copy into the new project, and characteristics of the 
target hardware such as processor type and clock speed, 
and the number and types of audio inputs and outputs.  
After selecting a platform, the user enables decoders 
and audio inputs and outputs, and this in turn is used to 
derive the memory requirements of the system. 

Once these preliminaries are completed, the principal 
VisualAudio window appears as shown in Figure 1. To 

its left is the “module palette”, a tree-structured browser 
of audio modules. This is derived by searching a set of 
user-settable file paths and finding all XML files that 
specify the target processor as supported. To its right is 
the “layout design window”.  The user designs his post-
processing by dragging audio modules from the module 
palette, dropping them onto the layout design window, 
and connecting them together. Audio module 
parameters can be set using “inspectors”.  Once all 
modules have been connected and configured, the user 
pushes the “generate code” button. This runs the routing 
algorithm and writes out a source file that represents the 
post-processing network. The user can then edit the 
control code to set module parameters and apply presets 
in response to notifications from the framework or 
decoders, or in response to host messages. For example, 
if two presets in flash each represent filter coefficients 
for a different sampling rate, then when a sampling rate 
change notification is received, the user control code 
would apply the appropriate preset. The user control 
code can also be used to periodically poll the hardware, 
ramp coefficients, etc. 

Finally, the user presses the “build” button, at which 
time the application is compiled/assembled and linked 
and down-loaded to the target hardware. If any presets 
are specified, these must be loaded to flash at this time. 
Finally, the program is started and the BTC channel (or 
other method) is used to communicate tuning 
information. If the user likes the adjustments to the 
parameters, he can save one or more sets as presets to be 
loaded to flash the next time the program is built. 
Tuning information is saved in a simple text format, 
allowing for easy editing, comparing, etc. 
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Figure 1.  The principal VisualAudio window.  The Audio Module Palette contains a list of available audio 
processing modules.  Modules are dragged, dropped, and wired together on the Layout Design Window.  Each 
module has an associated inspector that can be used to configure module parameters. 

 

4. THE VISUALAUDIO FRAMEWORK 

The VisualAudio framework is a light-weight interrupt 
driven OS that handles audio I/O, communications with 
a host micro-controller (if any), audio processing and 
user control code. VisualAudio provides two variants of 
this framework: a general purpose/AVR (“GP/AVR”) 
framework and an automotive framework. 

4.1. General Purpose/AVR Framework 

The general purpose framework is shown in Figure 2 
and assumes a single input stream that may be switched 
between different modes, such as digital (e.g. S/PDIF) 
and multi-channel analog. It runs the decoder, post-
processing and output at the same rate as the input. The 
stream detection (if the digital input is active) selects 
and instantiates the appropriate decoder. When enough 

data has come in, a decoder is triggered at a lower 
interrupt level. The decoder determines its own block 
size. The only requirement is that the post-processing 
buffer size evenly divide the decoder block size. 
Meanwhile data continues to flow through the system 
via a double-buffering scheme.  The post-processing is 
run immediately after the decoding. If the post-
processing buffer size is smaller than the decoder buffer 
size, the post-processing is run several times in a row. 
At user level (non-interrupt level), any host commands 
are processed, and any control code is executed. Note 
that since the decoding and post-processing are in the 
same thread of execution, they can share scratch 
memory, another memory optimization. Post-processing 
is done in-place on the decoder output buffer. 
Intermediate buffers in the post-processing are 
automatically assigned using a routing algorithm 
(described below), resulting in a high level of memory 
reuse. 
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Figure 2.  Audio flow within the VisualAudio general purpose framework. 
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Figure 3.  Audio flow within the VisualAudio automotive framework.
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4.2. Automotive Framework with 
Asynchronous Sample Rate Conversion 

The automotive framework is designed especially for 
high-end digital automotive amplifiers and is shown in 
Figure  3. It differs from the GP/AVR framework in that 
there are multiple simultaneous input streams which 
may be running at different sampling rates. There may 
be several PCM digital streams from sources such as a 
MOST5  bus (the network of choice in automotive 
applications), as well as several analog streams, and an 
encoded content stream (via MOST or S/PDIF.) The 
content stream may be encrypted with DTCP6 , a new 
encrypting scheme for copyrighted entertainment 
material sent over digital buses. The outputs may 
include both analog channels and digital channels via 
MOST. DTCP encryption may be required. To 
accommodate this heterogeneous set of inputs and 
outputs, the post-processing is run at a fixed sampling 
rate and any inputs or outputs not synched to that rate 
are converted using an asynchronous sampling rate 
converter with an integrated jitter buffer. An 
asynchronous sample rate converter has been developed 
that is extremely efficient for multi-channel data (the 
more channels, the more efficient the per-channel cost). 
A servo algorithm makes subtle adjustments to the 
sampling rate ratio to prevent underrun or overrun. 
Since the block size of the decoding can vary, the post-
processing runs at a smaller  block size and at a higher 
interrupt level than the decoding. [REF] 

4.3. Multiple Block Sizes without MIPS Spikes 

If large block processing is required, such as large FFT-
based processing, this may be done (in either the 
automotive or GP/AVR framework) at yet another 
                                                           

5 MOST stands for “Media Oriented Systems Transport”, a 
multimedia fiber-optic (low overhead, low cost) point-to-point 
network implemented in a ring, star or daisy-chain topology 
over Plastic optical fibers. The MOST bus specifications 
define the Physical Layer as well as the Application Layer, 
Network Layer, and Medium Access Control.  
 

6 DTCP stands for “Digital Transfer Content Protocol 
Specification,” managed by Digital Transfer Licensing 
Administrator (DTLA). It provides a cryptographic protocol 
intended to protecting copyrighted material from unauthorized 
copying, tampering, etc. Despite the fact that an automobile is 
seemingly a closed system, DTCP is legally required, perhaps 
forseeing a time where cars use wireless technology to 
communicate with a home network on the Internet. 

interrupt level and double-buffered to/from the post-
processing. The interrupt level depends on the block 
size: the smaller the block size, the higher the interrupt 
level. This ensures that all MIPS are used and there are 
no bursts.   Note that it is not adequate to compute the 
FFTs in the post-processing thread, and buffer up the 
output, as this would result in bursts of  MIPS and 
would require the whole system to leave room for these 
bursts, thus wasting the processor much of the time.7 

4.4. Bit Stream Detection Issues 

The audio system may have a digital input, such as 
S/PDIF or MOST, for receiving encoded digital content.  
The content may arrive in a number of formats and it is 
the job of the bit stream detector to identify the format 
of the content. The implementation and fine-tuning of 
the bit stream detector was tricky, for several reasons. 
There is ambiguity in the IEC8  specifications for 
S/PDIF streams. In addition, the detector must support 
various non-IEC streams, such as DTS-CD9 , which 
appears as an IEC PCM stream. Finally, many different 
compressed stream types must be handled without 
producing artifacts resulting from switching or 
misidentification. The problem is exacerbated by 
variations in DVD and CD players, and various out-of-
spec short-cuts in low-end players.  

VisualAudio provides a robust heuristic algorithm that 
does very well in preventing unwanted artifacts. 
However, since there is no single ideal solution, it also 
includes a set of parameters that give the customer the 
ability to select his own trade-offs. 

4.5. Memory Allocation 

To avoid fragmentation and speed up memory 
allocation, a standard general-purpose heap memory 
allocation, such as the C library malloc(), is not 

                                                           

7 Currently the VisualAudio tool supports only two block 
sizes: that of the decoder and that of the post-processing. 
However, there is nothing in the architecture that prohibits this 
generalization. 
 
8 IEC stands for “International Electrotechnical Commission,” 
a standards organization. The S/PDIF specification is 
document IEC 61937. 
 
9 Also called “unformatted DTS,” DTS-CD does not follow 
the IEC specification. Thus, heuristics are required to 
distinguish it from true PCM. 
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required. Instead, memory is allocated statically by the 
VisualAudio tool wherever  possible. When dynamic 
memory is required, it is allocated in a fixed sequence 
from a stack. This ensures no fragmentation. Post-
processing state is allocated first, then post-processing 
scratch, then decoder scratch (which can overlay with 
post-processing scratch in the GP/AVR framework), 
then decoder state, and finally user memory.  User 
memory is automatically freed when a decoder is 
destroyed by the bit stream detector. Synchronization of 
memory allocation and freeing is done via notification 
messages to the user control code. 

Since different decoders require different amounts of 
memory, it is difficult to have a single post-processing 
network that will support all decoders. In particular, 
DTS 24/96, which produces data at 96 Khz., uses much 
more memory than Dolby Digital (AC3) and DTS 48. 
Thus, it is often desirable to have a smaller post-
processing layout for DTS 24/96, and a larger one for 
Dolby Digital and DTS 48. This can be implemented 
using VisualDSP++’s “overlay” mechanism. This 
allows multiple data/code sets to share the same “run” 
memory space, while each has its own “live” memory 
space in flash or external memory. The code and data 
for the new layout are DMA’ed as needed when the 
stream is detected, into the same memory as the 
previous layout. VisualDSP++ supports the ability for 
the same piece of code or data to have two different 
addresses, one where the code or data lives and the 
other where it runs. This enables the linker to properly 
fix up addresses and the loader to properly place the 
code.  

Finally, it is worth mentioning that the audio I/O DMA 
size is typically smaller than the decoder block size. 
This is because the DMA is double-buffered in both 
directions. Thus, by using a smaller DMA size, less  
overall memory is required. In addition, in the 
automotive framework, a smaller DMA size allows for 
lower latency for non-encoded data streams such as 
announcements from collision avoidance systems. 

4.6. Host Protocol and Notifications 

VisualAudio supports a simple extensible host protocol 
for communication between a host micro-controller and 
the DSP. Each message begins with a 32-bit header 
word containing an op-code and a word count. This is 
followed by the data payload. The message ends with a 
32-bit checksum word.  

The protocol is always initiated by the host micro-
controller. The message is first sent to the framework. If 
the framework does not recognize the op-code, the 
message is forwarded to the user control code with the 
high bit set. The receiver of the message constructs a 
reply, which is then forwarded to the host micro-
controller. 

The method of transmitting the messages and replies is 
up to the platform-specific implementation. Typically 
SPI10  is used, but other methods, such as flag pins, are 
possible as well. Note that host communication can 
occur in parallel with tuning via the BTC. 

In addition to host messages, the framework and 
decoders generate asynchronous notifications. These are 
distinguished from host messages by the high bit being 
zero.  After the user control code handles the 
notification, it can optionally forward it to the host 
micro-processor. In this case, the notification gets put in 
a queue of messages for the host micro-controller. 
When the queue goes from empty to non-empty, a 
platform-specific function is called to raise an interrupt 
on the host micro-controller. If no such interrupt exists, 
the  host micro-controller should poll periodically for 
notifications.  

As an example, user control code might respond to 
notifications by enabling Dolby Pro Logic II when the 
input is stereo and disabling it when the input is 5.1. 

5. AUDIO MODULES 

VisualAudio provides a library of audio modules 
sufficient to develop most products.   Audio modules 
operate on blocks of audio data rather than on individual 
samples.  This design choice is a good match for 
products containing audio decoders which output blocks 
of audio data.  Also, by operating on blocks of data, the 
overhead of a function call can be amortized over 
several samples.  This yields efficient execution while 
supporting a modular software architecture. 

VisualAudio provides a library of audio modules for a 
variety of common functions ranging from primitives 
such as scalers, multipliers and delays, to moderately 
complex modules such as cascaded biquad filters, to 
modules with 3rd party intellectual property, such as 
Dolby Pro Logic IIx and DTS Neo:6. Source code is 
                                                           
10 SPI stands for “Serial Peripheral Interface” a standard serial 
bus. 
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provided to many of the modules and these can serve as 
templates for custom modules. 

Each audio module consists of three elements:  (1) an 
XML file that describes the audio module to the PC 
application, (2) a real-time audio processing function, 
and (3) a header file that describes the module’s data 
structure and render function to the C compiler.   

The XML file contains memory allocation rules, a list of 
audio inputs and outputs, and lists high-level and low-
level parameters.  High-level parameters are to be set by 
the user directly.  The XML file also contains a C-like 
expression language for converting the high-level 
parameters to low-level parameters that reside only on 
the DSP.  For example, an oscillator’s frequency may be 
specified in Hertz using a high-level parameter, but 
would be mapped to a low-level parameter with units of 
radians/sample by the expression language.  This 
mechanism is adequate for (e.g.) simple filter design 
techniques, but more involved design algorithms are 
best handled in an external application, such as 
MATLAB, communicating via the COM interface. 

The audio module’s real-time processing function – 
called the render function – follows a C calling 
convention for ease of development and integration.  
Most of the audio modules supplied with VisualAudio 
are written in hand-coded assembly language, though 
they can be written in C if desired.  Each module’s 
render function is called with three arguments: a pointer 
to the module’s data structure, an array of pointers to 
input, output and scratch buffers, and the block size. An 
example C prototype for a render function appears as 
follows: 

   void Biquad_Render( AMF_Biquad *instance, 
float **buffers, 
int tickSize); 

Each module stores a pointer to its render function; 
hence the render function itself can swap-in an 
alternative function to be run the next time the module 
executes. Any module can be muted, bypassed or 
inactivated simply by modifying its render function 
pointer. 

Audio data is presented by 32-bit data types on both the 
SHARC and Blackfin.  The SHARC utilizes single 
precision floating-point while the Blackfin utilizes a 
fractional representation.  VisualAudio supports both 
mono and stereo audio connections.  Stereo streams are 
represented by interleaved data and facilitate use of 

SIMD.  Audio modules have any number of input and 
output “pins,” any of which may be mono or stereo. The 
module’s I/O is specified in the module XML file. 

Each module class is represented by a single C structure 
typedef, where the fields of this structure represent the 
low-level parameters of the module.  The module 
format also supports indirect arrays whose size is 
determined by an expression. For example, a delay 
buffer size could be specified in seconds or the size of a 
filter coefficient array could depend on the filter order.  

VisualAudio provides inspectors for configuring audio 
module parameters as shown in Figure 1.  The inspector 
contains sliders, fields, or other controls for the high-
level variables specified in the module XML file.  It 
also supports read-back variables that display the state 
on the DSP. VisualAudio is able to create this inspector 
based solely on the information in the XML file. 
Alternatively, the XML file can specify a DLL to load 
to provide a custom inspector and communicate with 
VisualAudio via a standard API. 

The audio module library was designed to provide 
significant overlap between the SHARC and Blackfin 
processors.  When possible, the same high-level API is 
provided on both processors.  Thus, it is possible to 
open a SHARC processing layout, change to a Blackfin 
platform, and run the layout on the Blackfin. 

The library modules are highly-optimized assembly 
language and examples of inner loops are shown in 
Figure 4.  The examples are from modules that 
implement a cascade of biquad filters that operate on 
interleaved stereo data. 
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  lcntr=r1, do filtering until lce; 
    f12=f2*f4,  f8=f8+f12,   f10=dm(i3,m4); 
    f12=f3*f5,  f10=f10+f12, dm(i4,m4)=f8; 
    f12=f2*f6,  f8=f10+f12,  f2=f3; 
  filtering: 
    f12=f3*f7,  f8=f8+f12,   f3=f8; 
 
 
 
  LSETUP (sampleLoopStart , sampleLoopEnd)    
  LC0=P3; 
  sampleLoopStart: 
    A0 += R0.H*R4.H, A1 += R0.H*R4.L (M) || R1=[I1]     || NOP; 
    A1 += R4.H*R0.L (M); 
    A0 += R1.H*R6.H, A1 += R1.H*R6.L (M) || [I1]=R5     || NOP; 
    A1 += R6.H*R1.L (M) || R1=[I0++M2] || NOP; 
    A0 += R1.H*R7.H, A1 += R1.H*R7.L (M) || R0=[I0]     || NOP; 
                     A1 += R7.H*R1.L (M); 
    A0 += R0.H*R3.H, A1 += R0.H*R3.L (M) || R5=[I2++M2] || NOP; 
                     A1 += R3.H*R0.L (M); 
    A1 = A1 >>> 15; 
    A0 += A1; 
    R0 = A0 (ISS2); 
    A0  = R5.H*R2.H, A1  = R5.H*R2.L (M) || [I0]=R0     || NOP; 
sampleLoopEnd: 
    A1 += R2.H*R5.L (M) || R0=[I1++M2] || [I3++M2]=R0; 

Figure 4.  Optimized inner loops for stereo biquad filters on the SHARC (top) and Blackfin (bottom).  Each loop 
operates on stereo interleaved data and iterates over a block of audio samples.  An outer loop (not shown) iterates 
over multiple stages of biquads.  On the SHARC, SIMD execution is enabled, and the arithmetic occurs twice – 
once each in the primary and secondary register sets. Each biquad has 4 coefficients and implements a Direct Form 
II structure.  A total of 8 floating-point multiply-accumulates occur in 4 clock cycles.  On the Blackfin, each biquad 
has 5 coefficients and implements a Direct Form I structure. A total of 10 32-bit double precision multiply-
accumulates require 13 cycles. 

 
 

6. AUTOMATIC ALGORITHM FOR 
DETERMINING ROUTING, RUN-TIME 
ORDER AND MEMORY ALLOCATION  

VisualAudio supports arbitrary graphs for post-
processing. The only restriction is that only one 
graphical  connection (called a “wire”) may connect to 
each input pin of a module. Output pins may fan out to 
multiple modules. Feedback is allowed. This allows 
reverberators and physical models to be easily created. 
A module may even feedback to itself.  

To allocate the modules and determine their run order, 
an automated routing algorithm was devised. This 
algorithm has several stages. First, it checks for 
circularities. It does this by traversing the network 

recursively, beginning with each audio input pin (that is, 
the outputs of the decoder or the direct analog or PCM 
input), and then beginning again with each module that 
was not reached in the first search (because it has no 
connected inputs or no inputs at all). Any detected 
circularity results in a static buffer allocation, as this 
buffer is needed to break the circularity and represents a 
buffer-length delay. 

The next step is to traverse the network again, this time 
doing a topological sort [16] to determine run order. 
This leads to a run order with no hidden delays, except 
where a circularity was detected. As each module is 
visited, input and output buffers are allocated from a 
scratch pool. As soon as a buffer’s contents is no longer 
needed, it is returned to the scratch pool. This typically 
results in a large degree of buffer reuse. Note that some 
modules are coded (and specified in the XML) such that 
inputs and outputs may share the same memory buffers, 

SHARC 

Blackfin 
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while others require that their inputs and outputs be 
distinct from one another. These restrictions are taken 
into account by the routing and allocation algorithm. In 
addition, modules can use arbitrary amounts of scratch 
memory, which is allocated from the same pool as the 
inter-connection buffers. Finally, all of this memory is 
available as scratch to the decoders in the GP/AVR 
framework, where decoding and post-processing occur 
in the same thread. Thus, only a small amount of 
memory is needed to run the post-processing network 
above and beyond that required by the audio module 
parameters and state variables themselves. 

Inter-module connection buffer pointers are not stored 
directly, but as indices into an array of pointers. This 
allows double buffering of the post-processing buffer 
itself and reuse of this pair of buffers as inter-module 
connection buffers. Before a module is called by the 
framework, its indices are resolved to pointers, and 
these are passed to the module render code. In 
applications where the double-buffering is not needed, 
the indices are resolved at initialization time, thus 
saving the MIPS needed to continually resolve them on 
each render call. (This optimization is possible only if 
the post-processing buffer size is the same as the I/O 
DMA size.)  

Note that since the post-processing is done in-place, it is 
possible for the routing algorithm to reach a point where 
it needs to write into an output buffer that is 
unavailable, as its contents haven’t been fully consumed 
yet. In this case, the routing algorithm allocates a 
temporary buffer and inserts a copy module to copy the 
data to the output buffer. This copy is inserted at the end 
of the list of modules so that by the time it runs, the 
output buffer is available. 

7. TUNING 

Tuning of audio modules can be done in real-time using 
the VisualAudio tool’s inspectors or via the external 
COM interface. The tuning is implemented with a 
subset of the host protocol that allows individual 
variables and arrays (including sparse arrays) to be set 
or read. The tuning commands are executed on the DSP 
at non-interrupt level, while audio executes at interrupt 
level. This allows audio to proceed uninterrupted, 
regardless of the bandwidth of the tuning 
communication. However, there are times when a set of 
coefficients must be applied as a unit, with no 
intervening audio processing, to avoid an undesirable 
effect, such as a filter going unstable. For this reason, an 

“atomic” setting command is provided, which masks 
interrupts while the array transfer occurs. Similarly, an 
atomic read guarantees that all read values in a packet 
come from the same instant in time.   

8. AUTOMATED TESTING 

The COM interface is useful for implementing 
automated test scripts. In addition to its support for 
reading and writing parameters, the COM interface also 
provides a “demand render” mode. Here, the audio 
processing is halted and input buffers are written to the 
DSP from the external application (typically, 
MATLAB). The audio processing is then triggered and 
the resulting data is read back. This allows regression 
testing to be completely automated. 

9. CONCLUSION 

VisualAudio has proven to be a viable tool for speeding 
up deployment of audio products on Analog Devices 
SHARC processors, and is beginning to be used for 
Blackfin processors. It was designed from the beginning 
with these applications in mind and this focus guided 
the design trade-offs. In addition the VisualAudio tool, 
framework, modules and decoders were developed in 
parallel, and are thus well integrated with one another, 
while also maintaining sufficient independence to allow 
them to be easily used separately. For information about 
obtaining VisualAudio, visit www.analog.com and 
search for “VisualAudio.” 
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